Через вершину A ромба ABCD проведена плоскость, параллельная диагонали BD . Найти углы наклона сторон AB и AD к этой плоскости, если диагональ BD = 16 см и удалена от данной плоскости на 5 см, а площадь ромба равна 96 см².
- - - - - - - - - - - - - - - - -
Любой ученик должен знать
Ромб - это параллелограмм у которого все стороны равны.
Свойства ромба: Диагонали ромба делят его углы пополам. Сумма углов прилежащих к одной стороне равна 180°. Диагонали ромба пересекаются под прямым углом (90°). Диагонали ромба в точке пересечения делятся пополам. Диагонали ромба являются биссектрисами его углов.
- - - - - - - -
BB₁⊥ α ; DD₁ ⊥ α BB₁=DD₁ =5 см
S(ABCD) =AC*BD/2⇒AC =2*S(ABCD) /BD =2*96 см²/16 см=2*6 см =12 см
Из ΔAOB : AB =√(AO²+BO²) =√( (AC/2)²+(BD/2)²) =√(6²+8²) =10 (см)
Прямоугольные тр. ΔDD₁A = ΔBB₁A по катету и гипотенузе
Из ΔBB₁A : катет BB₁ =5 =10/2 = AB/2 половине гипотенузы
3. возможно ли, что бы одно биссектриса треугольник делила пополам вторую биссектрису?
я думаю, это не возможно. если одна биссектриса делила бы другую биссектрису пополам, то эти биссектрисы должны быть перпендикулярны. такое возможно, например, у ромба.
Через вершину A ромба ABCD проведена плоскость, параллельная диагонали BD . Найти углы наклона сторон AB и AD к этой плоскости, если диагональ BD = 16 см и удалена от данной плоскости на 5 см, а площадь ромба равна 96 см².
- - - - - - - - - - - - - - - - -
Любой ученик должен знать
Ромб - это параллелограмм у которого все стороны равны.
Свойства ромба: Диагонали ромба делят его углы пополам. Сумма углов прилежащих к одной стороне равна 180°. Диагонали ромба пересекаются под прямым углом (90°). Диагонали ромба в точке пересечения делятся пополам. Диагонали ромба являются биссектрисами его углов.
- - - - - - - -
BB₁⊥ α ; DD₁ ⊥ α BB₁=DD₁ =5 см
S(ABCD) =AC*BD/2⇒AC =2*S(ABCD) /BD =2*96 см²/16 см=2*6 см =12 см
Из ΔAOB : AB =√(AO²+BO²) =√( (AC/2)²+(BD/2)²) =√(6²+8²) =10 (см)
Прямоугольные тр. ΔDD₁A = ΔBB₁A по катету и гипотенузе
Из ΔBB₁A : катет BB₁ =5 =10/2 = AB/2 половине гипотенузы
⇒ ∠BAB₁ = 30°
решение с рисунком во вложении
1. т.к. ан и вн - биссектрисы, то ∠ван=α/2, ∠ван=β/2.
тогда в ∆авн по теореме о сумме углов треугольника
∠анв=180°-(α/2 + β/2) = 180°- (α + β)/2
2. аналогично первой , получим:
∠а +∠в = 180° - ∠с = 180° - γ
∠анв=180°-(∠а/2 +∠в/2) = 180°- (180° - γ)/2 = 90° + γ/2.
3. возможно ли, что бы одно биссектриса треугольник делила пополам вторую биссектрису?
я думаю, это не возможно. если одна биссектриса делила бы другую биссектрису пополам, то эти биссектрисы должны быть перпендикулярны. такое возможно, например, у ромба.