Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
треугольники АОВ , ДОС - РАВНЫ
тоже самое с треугольниками АОД и ВОС - тоже равны - по тому же признаку
теперь
треугольник АВС = треуг АОВ +треуг ВОС
треугольник СДА = треуг АОД +треуг ДОС
треугольники АВС и СДА равны, потому что состоят из двух равных треуг-ков
По теореме пифагора выражаем сторону а=10*√2/√2=10 По той же самой теореме ищим высоту проведеную в боковой грани(там получается прямоугольный треугольник с гипотенузой=5√3 и одним из катетов равным1/2а) h=√(5√3)^2-5^2)=5√2 Площадь боковой поверхности 4* 1/2а*h=200√2(1/2аh- площадь треугольника) Площадь полной поверхности =200√2+100(100-это площадь квадрата в основании)=300√2 искомый двуграный угол это угол между высотой боковой стороны и 1/2а соsА=5/(5*√2)=1/√2 А=45 градусов
обозначим точку пересечения отрезков О
углы АОВ , ДОС - вернтикальные - равны
стороны АО, ОС равны -половины отрезка АС
стороны ВО, ОД равны -половины отрезка ВД
ПЕРВЫЙ признак равенства :
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
треугольники АОВ , ДОС - РАВНЫ
тоже самое с треугольниками АОД и ВОС - тоже равны - по тому же признаку
теперь
треугольник АВС = треуг АОВ +треуг ВОС
треугольник СДА = треуг АОД +треуг ДОС
треугольники АВС и СДА равны, потому что состоят из двух равных треуг-ков
ДОКАЗАНО
В основании пирамиды квадрат с диагональю 10√2
По теореме пифагора выражаем сторону а=10*√2/√2=10 По той же самой теореме ищим высоту проведеную в боковой грани(там получается прямоугольный треугольник с гипотенузой=5√3 и одним из катетов равным1/2а) h=√(5√3)^2-5^2)=5√2 Площадь боковой поверхности 4* 1/2а*h=200√2(1/2аh- площадь треугольника) Площадь полной поверхности =200√2+100(100-это площадь квадрата в основании)=300√2 искомый двуграный угол это угол между высотой боковой стороны и 1/2а соsА=5/(5*√2)=1/√2 А=45 градусов