Объяснение:
Если основание равно 5 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2а+5
2а=19–5
2а=14
а=7
Значит боковая сторона равна 7 см.
Если боковая сторона равна 7 см...
19=2*7+b
19=14+b
b=19–14
b=5
Тогда основание равно 5 см.
Если основание больше боковой стороны на 1 см...
Пусть боковая сторона равна х, тогда основание х+1,
Тогда периметр будет находиться по формуле:
Р=2х+х+1
Р=3х+1
Подставим известное значение:
19=3х+1
19–1=3х
3х=18
х=6
Тогда боковая сторона равна 6 см.
ответ: 1-7, 2-5, 3-6.
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри
Объяснение:
Если основание равно 5 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2а+5
2а=19–5
2а=14
а=7
Значит боковая сторона равна 7 см.
Если боковая сторона равна 7 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Подставим известные значения:
19=2*7+b
19=14+b
b=19–14
b=5
Тогда основание равно 5 см.
Если основание больше боковой стороны на 1 см...
Периметр равнобедренного треугольника находится по формуле:
Р=2а+b, где а–бококая сторона, b–основание.
Пусть боковая сторона равна х, тогда основание х+1,
Тогда периметр будет находиться по формуле:
Р=2х+х+1
Р=3х+1
Подставим известное значение:
19=3х+1
19–1=3х
3х=18
х=6
Тогда боковая сторона равна 6 см.
ответ: 1-7, 2-5, 3-6.
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри