Все углы любого треугольника в сумме составляют 180°
Так как заданный треугольник - прямоугольный, то его прямой угол равен 90°, а другие два должны в сумме составлять также 90° (180°-90°=90°), поэтому вариант "А" не подходит (сумма углов 50°+80°=130°)
У нас есть катет a=5см и катет b=8см.
Отношение отношение противолежащего катета к прилежащему - это тангенс угла.
tg(α) = a/b = 5/8 = 0,625 ; atg(0,625) = 32°
tg(β) = b/a = 8/5 = 1,600 ; atg(1,600) = 58°
Из предоставленных вариантов только в варианте "B" есть углы 32° и 58°.
Вариант "В"
Объяснение:
Все углы любого треугольника в сумме составляют 180°
Так как заданный треугольник - прямоугольный, то его прямой угол равен 90°, а другие два должны в сумме составлять также 90° (180°-90°=90°), поэтому вариант "А" не подходит (сумма углов 50°+80°=130°)
У нас есть катет a=5см и катет b=8см.
Отношение отношение противолежащего катета к прилежащему - это тангенс угла.
tg(α) = a/b = 5/8 = 0,625 ; atg(0,625) = 32°
tg(β) = b/a = 8/5 = 1,600 ; atg(1,600) = 58°
Из предоставленных вариантов только в варианте "B" есть углы 32° и 58°.
Объяснение:
Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом.
У прямоугольного параллелепипеда все грани — прямоугольники.
Длина вектора равна длине отрезка ( над векторами нужно ставить стрелки).
|BB₁ |=12 ( противоположные ребра равны) ;
|AD|=11 ;
|CD₁ |=√153 ( из прямоугольного ΔDСD1 пот. Пифагора CD₁²=3²+12²) ;
|BD|=√130 ( из прямоугольного ΔАВD пот. Пифагора CD₁²=3²+11²) ;
| BD₁ |= √146 (Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений: BD₁²=3²+4²+11² , BD₁²=146 )