Для облегчения выкладок сначала рассмотрим подобный треугольник со сторонами в три раза меньше, найдем его площадь, а результат затем удевятерим (ведь площади подобных фигур относятся как квадрат коэффициента подобия). Итак, берем стороны a=13; b=14; c=15. Воспользуемся формулой Герона S^2=p(p-a)(p-b)(p-c) (я написал S^2, чтобы не писать корень в правой части), где p - полупериметр.
p=(13+14+15)/2=21; p-a=8; p-b=7; p-c=6; S^2=21·8·7·6=7^2·3^2·4^2=84^2⇒S=84. Осталось результат умножить на 9.
Воспользуемся формулой Герона
S^2=p(p-a)(p-b)(p-c) (я написал S^2, чтобы не писать корень в правой части), где p - полупериметр.
p=(13+14+15)/2=21; p-a=8; p-b=7; p-c=6;
S^2=21·8·7·6=7^2·3^2·4^2=84^2⇒S=84.
Осталось результат умножить на 9.
ответ: 756