28 см²
Объяснение:
Дано:
Прямоугольник ABCD (см. рисунок)
AK – биссектриса:
∠KAB = ∠KAD, K∈BC
BK=3,5 см
KC=4,5 см
Найти: площадь прямоугольника S(ABCD).
Решение: У прямоугольника ABCD все углы равны, поэтому ∠B=∠A=90°.
Так как AK – биссектриса, то ∠KAB=90°:2=45°.
Следовательно, как внутренний угол треугольника
∠BKA=180°–∠B–∠KAB= 180°–90°–45°=45°.
Тогда, так как углы при основании треугольника AKB равные, то треугольник AKB равнобедренный: AB=BK=3,5 см.
Имеем: BC=BK+KC=3,5 см+4,5 см=8 см.
Теперь можем определить площадь прямоугольника
S(ABCD)=AB•BC= 3,5 см • 8 см = 28 см².
2) дуга АВ = 104°
3) CD = 4,2 см
периметр ∆CОD = 12,6 см
2) ∠АОС - центральный угол окружности с центром О.
Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла , т.е. Длина дуги АС=100°
∪АВ:∪ВС=2:3 ⇒ ∪АВ=2х, ∪ВС=3х
т.к. в окружности 360°, составляем уравнение:
∪АС+∪АВ+∪ВС=360°
100+2х+3х=360
5х=260
х=52°
∪АВ=2х = 2*52=104°
3) Радиус = половине диаметра: R= 1/2 * АВ = 8,4*1/2=4,2
К - середина хорды CD ⇒ СК=КД
Угол между диаметром и радиусом это угол СОК.
Рассмотрим ΔСОК и ΔДОК : ОС=ОД - радиусы окружности, ОК - общая, СК=ДК - по условию ⇒ ΔСОК = ΔДОК по трём сторонам (3 признак равенства треугольников)
Из равенства Δ следует равенство углов: ∠СОК=∠ДОК = 30° ⇒∠СОД=60°
∠С = ∠Д = (180°-60°)/2= 60°
т.к. ∠С = ∠Д = ∠О ⇒ ΔСОД - равносторонний ОС=ОД=СД=R = 4,2
РΔ=3*R =3*4,2=12,6 см
28 см²
Объяснение:
Дано:
Прямоугольник ABCD (см. рисунок)
AK – биссектриса:
∠KAB = ∠KAD, K∈BC
BK=3,5 см
KC=4,5 см
Найти: площадь прямоугольника S(ABCD).
Решение: У прямоугольника ABCD все углы равны, поэтому ∠B=∠A=90°.
Так как AK – биссектриса, то ∠KAB=90°:2=45°.
Следовательно, как внутренний угол треугольника
∠BKA=180°–∠B–∠KAB= 180°–90°–45°=45°.
Тогда, так как углы при основании треугольника AKB равные, то треугольник AKB равнобедренный: AB=BK=3,5 см.
Имеем: BC=BK+KC=3,5 см+4,5 см=8 см.
Теперь можем определить площадь прямоугольника
S(ABCD)=AB•BC= 3,5 см • 8 см = 28 см².
2) дуга АВ = 104°
3) CD = 4,2 см
периметр ∆CОD = 12,6 см
Объяснение:
2) ∠АОС - центральный угол окружности с центром О.
Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла , т.е. Длина дуги АС=100°
∪АВ:∪ВС=2:3 ⇒ ∪АВ=2х, ∪ВС=3х
т.к. в окружности 360°, составляем уравнение:
∪АС+∪АВ+∪ВС=360°
100+2х+3х=360
5х=260
х=52°
∪АВ=2х = 2*52=104°
3) Радиус = половине диаметра: R= 1/2 * АВ = 8,4*1/2=4,2
К - середина хорды CD ⇒ СК=КД
Угол между диаметром и радиусом это угол СОК.
Рассмотрим ΔСОК и ΔДОК : ОС=ОД - радиусы окружности, ОК - общая, СК=ДК - по условию ⇒ ΔСОК = ΔДОК по трём сторонам (3 признак равенства треугольников)
Из равенства Δ следует равенство углов: ∠СОК=∠ДОК = 30° ⇒∠СОД=60°
∠С = ∠Д = (180°-60°)/2= 60°
т.к. ∠С = ∠Д = ∠О ⇒ ΔСОД - равносторонний ОС=ОД=СД=R = 4,2
РΔ=3*R =3*4,2=12,6 см