Пусть дан ромб ABCD, дианогаль AC которого равна стороне и равна 4. В ромбе все стороны равны, из этого следует, что треугольники ABC и ACD равносторонние (в каждом из треугольников 2 стороны являются сторонами исходного ромба и равны между собой, а третья сторона - диагональ AC, которая равна им по условию). Значит, площадь ромба равна сумме площадей двух равносторонних треугольников со стороной 4. Площадь равностороннего треугольника со стороной a равна , тогда площадь ромба будет равна 2*(4²√3/4)=2*4*√3=8√3