а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
1)начнем с того, что это равнобедренная трапеция. углы при основаниях равны. то есть угол а=в=(360-120*2)/2=60 градусов; d=c=120 градусов. 2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3 3)теперь рассматриваем отдельно треугольник adh: уголahd=90(dh-высота) угол dah=60 сумма всех углов =180, тогда угол adh=180-90-60=30 4) рассмотрим опять этот треугольник угол adh=30 сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы) и получается, что ad=cb=6. отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34
а где продолжение условия? основанием пирамиды dabc является правильный треугольник abc сторона которого = ребро da перпендикулярно к плоскости авс , а плоскость dbc составляет с плоскостью авс угол 30*. найдите площадь боковой поверхности пирамиды. условие такое? если такое, то вот решение : s(бок) = 2s(адс) + s(всд) угол дка = 30, тогда ад = ак* tg30 = (av3/2)*v3/3 =a/2 тогда s(асд) = 1/2*а*а/2 = а^2 / 4 дк = а, тогда s(всд) = 1/2*а*а = а^2 / 2 s(бок) = 2*(а^2 / 4) * (а^2 / 2) = а^2
2)затем делаем дополнительные построения -высота dh и ck перпендикулярные ab, тогда ah=kb=14-8/2=3
3)теперь рассматриваем отдельно треугольник adh:
уголahd=90(dh-высота)
угол dah=60
сумма всех углов =180, тогда угол adh=180-90-60=30
4) рассмотрим опять этот треугольник угол adh=30
сторона ah=3, тогда ad=ah*2(катет прямоугольного треугольника лежащий против угла в 30 градусов равен половине гипотенузы)
и получается, что ad=cb=6.
отсюда - периметр равен сумме всех сторон, то есть 8+14+6+6=34