Окружность = 360° 1) 5+4 =9 столько частей в этих 360° Меньшая дуга 360:9*4=40°*4=160° Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ). Вписанный угол АСВ равен половине центрального угла. 160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен 360°:9*5:2=100°. Но обычно имеется в виду острый угол. ------------ 2) 7+3=10 столько частей в двух дугах. 360°:10*3=108° содержит центральный угол КОМ ( второй рисунок) Вписанный угол МЕК равен половине градусной меры центрального угла. 108°:2=54° - под этим углом видна вторая хорда. (Или, если точка расположена по другую сторону хорды, 360:10*7:2=126°)
Даны вершины треугольника:
А(3; -1; 6), В(1; 7; -2), С(1; -3; 2).
Находим расстояние между точками.
d = v ((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²).
Вектор АВ -2 8 -8 |AB| = √(4 + 64 + 64) =√132.
Вектор ВС 0 -10 4 |BC| = √(0 + 100 + 16) =√116.
Вектор АС -2 -2 -4 |AC| = √(4 + 4 + 16) =√24.
Треугольник АВС
a(ВС) b(АС) c(АВ) p 2p S
10,77 4,89 11,49 13,58 27,158 26,306
116 24 132 квадраты
По теореме косинусов:
cos A = 0,355334527 cos B = 0,905111457 cos С = 0,075809804
Аrad = 1,207524401 Brad = 0,439154533 Сrad = 1,494913719
Аgr = 69,18605183 Bgr = 25,16170132 Сgr = 85,65224685 .
По заданию - треугольник АВС разносторонний.
1) 5+4 =9 столько частей в этих 360°
Меньшая дуга 360:9*4=40°*4=160°
Градусная величина этой дуги соответствует величине центрального угла ( на рисунке 1 это угол АОВ).
Вписанный угол АСВ равен половине центрального угла.
160°:2=80° - под этим углом видна хорда из любой точки на дуге АСВ
Если точку взять на дуге по другую сторону хорды, то угол, под которым она будет видна, равен
360°:9*5:2=100°. Но обычно имеется в виду острый угол.
------------
2) 7+3=10 столько частей в двух дугах.
360°:10*3=108° содержит центральный угол КОМ ( второй рисунок)
Вписанный угол МЕК равен половине градусной меры центрального угла.
108°:2=54° - под этим углом видна вторая хорда.
(Или, если точка расположена по другую сторону хорды,
360:10*7:2=126°)