Дано: - треугольник АВС, биссектриса ВД, вписанная окружность с центром О, - АВ = х, - ВС = х + 1, - АС = 15, - ВО:ОД = 9:5.
Деление биссектрис точкой их пересечения (а это центр вписанной окружности) определяется формулой: ВО:ОД = (АВ + ВС)/АС = (х + х + 1) /15 = 9/5. Сократим знаменатели на 5 и приведём к общему знаменателю: 2х + 1 = 3*9, 2х = 27 - 1 = 26, х = 26/2 = 13 это сторона АВ. Находим сторону ВС = 13 + 1 = 14. Полупериметр р = (13+14+15)/2 = 21. Площадь S треугольника АВС находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)) = √ 7056 = 84. Тогда радиус вписанной окружности r = S/p = 84/21 = 4.
- треугольник АВС, биссектриса ВД, вписанная окружность с центром О,
- АВ = х,
- ВС = х + 1,
- АС = 15,
- ВО:ОД = 9:5.
Деление биссектрис точкой их пересечения (а это центр вписанной окружности) определяется формулой:
ВО:ОД = (АВ + ВС)/АС = (х + х + 1) /15 = 9/5.
Сократим знаменатели на 5 и приведём к общему знаменателю:
2х + 1 = 3*9,
2х = 27 - 1 = 26,
х = 26/2 = 13 это сторона АВ.
Находим сторону ВС = 13 + 1 = 14.
Полупериметр р = (13+14+15)/2 = 21.
Площадь S треугольника АВС находим по формуле Герона:
S = √(p(p-a)(p-b)(p-c)) = √ 7056 = 84.
Тогда радиус вписанной окружности r = S/p = 84/21 = 4.
призмы = см³.
Объяснение:Обозначим данную призму буквами .
см.
============================================================
Если призма правильная, то она всегда будет прямой.- прямоугольный, где - высота данной призмы.
Рассмотрим :
, по условию.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен половине гипотенузы.см.
По теореме Пифагора найдём высоту :
см.
Рассмотрим нижнее основание данной призмы:
шестиугольник - правильный, так как данная призма тоже правильная.
- большая диагональ шестиугольника .
По свойству правильного шестиугольника, см.
шестиугольника = cм².
призмы = шестиугольника см³