Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ:
1) т.к. а||b, то ∠1= ∠3= 130 как накрестлежащие(я обозначила ∠3 под углом 2)
∠3 и ∠2 смежные => ∠2 = 180 - ∠3= 180 - 130 = 50
ответ: б
2) т.к ∠вас + ∠dca = 180, то ав||сd
∠bdc = ∠a = 70, т.к они накрестлежащие
3)т.к ∠вмк = ∠вас, то мк||ас
т.к. мк||ас, то ∠асв + ∠мкс = 180
4)х = 1 часть
т.к. углы соответственные => 4х+5х= 180
9х=180
х=180/9
х=20
4х= 4*20 = 80
5х = 5*20 = 100
100> 80 => 5х> 4х
5)т.к. вс||аd, то ∠вка=∠каd ( как накрестлежащие)
т.к. ак - биссектриса, то ∠вак = ∠каd = ∠вка
т.к ∠вак = ∠вка, то △авк - равнобедренный
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°