D=4 => R=2
Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2
Площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой
равна площади сектора минус площадь треугольника
Найдем площадь сектора
S=(pi*R^2/360°)*A°,
ГДЕ А°- угол треугольника или угол сектора
S=(pi*2^2/360)*60=4*pi*/6=2,09
Площадь равностороннего треугольника равна
S=(sqrt(3)/4)*a^2
S=(sqrt(3)/4)*4=sqrt(3)=1,73
То есть наша площадь равна
S=2,09-1,73=0,36
D=4 => R=2
Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2
Площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой
равна площади сектора минус площадь треугольника
Найдем площадь сектора
S=(pi*R^2/360°)*A°,
ГДЕ А°- угол треугольника или угол сектора
S=(pi*2^2/360)*60=4*pi*/6=2,09
Площадь равностороннего треугольника равна
S=(sqrt(3)/4)*a^2
S=(sqrt(3)/4)*4=sqrt(3)=1,73
То есть наша площадь равна
S=2,09-1,73=0,36