Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Построим трапецию АВСД удовлетворяющую условиям задачи (угол ВАД = 90, АДС = 30 градусам) и проведем высоту СЕ. Диаметр вписанной в трапецию окружности равен высоте трапеции: d=СЕ=АВ=8 ед. Рассмотрим треугольник СДЕ: угол СЕД = 90, ЕДС = 30 градусам. Катет лежащий против угла в 30 градусов равен половине гипотенузы. Значит СД=2СЕ=2*8=16 ед. В трапецию можно вписать окружность тогда и только тогда когда суммы ее противоположных сторон равны, то есть AD+BC=AB+CD. Площадь трапеции равна S=((a+b) h)/2 (где a и b основания трапеции h высота) S=((ВС+АД)*СЕ)/2 Так как AD+BC=AB+CD то площадь данной трапеции равна: S=((AB+CD)*СЕ)/2 S=((8+16)*8/2=96 кв. ед.
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)
Диаметр вписанной в трапецию окружности равен высоте трапеции:
d=СЕ=АВ=8 ед.
Рассмотрим треугольник СДЕ:
угол СЕД = 90, ЕДС = 30 градусам.
Катет лежащий против угла в 30 градусов равен половине гипотенузы. Значит СД=2СЕ=2*8=16 ед.
В трапецию можно вписать окружность тогда и только тогда когда суммы ее противоположных сторон равны, то есть AD+BC=AB+CD.
Площадь трапеции равна S=((a+b) h)/2 (где a и b основания трапеции h высота)
S=((ВС+АД)*СЕ)/2
Так как AD+BC=AB+CD то площадь данной трапеции равна:
S=((AB+CD)*СЕ)/2
S=((8+16)*8/2=96 кв. ед.