Найдите объем тетраэдра, вершины которого точки m (2, 4, 12), о (0, 0, 0), n (4, 0, 0), k (0, 10, 0) желательно с чертежом и дано, а я нажму ‘’ и отмечу как лучший ответ
См. рисунки 1) если это параллелогр., тогда уголА=углу С и угол В=углу D рассмотрим треугольник АВК. Он прямоугольный (по условию). АВ=2ВК есть такое св-во- если у прямоугольного треугольника катет равен половине гипотенузы, то он лежит против угла 30 градусов. т.е. угол А (как и С)=30 тогда В=180-30=150 т.е. D=50 2) рассмотрим красные треуг. ВО=ОD, AO=OC (по условию) улы ВОС и АОД равны как вертикальные. значит треуг. равны, соотв. стороны ВС и АД равны. у зеленых треуг. аналогично. А если у четырехугольника противоположные стороны попарно равны, то такой 4-уг явл. параллелограммом (св-во)
Описанная вокруг ABC окружность имеет центр в точке M. Пусть другой конец диаметра, проходящего через точку C - точка Е. Кроме того, пусть точка F на этой окружности лежит на продолжении CH. Поскольку CE - диаметр, то угол EFC прямой, то есть EF II AB. Биссектриса угла ABC делит дугу AFEB пополам. Пусть точка N на окружности лежит на продолжении биссектрисы, тогда дуги AN и NB равны (это дуги в четверть окружности). Из параллельности EF и AB следует что дуги AF и BE равны, следовательно, равны и дуги FN и NE. Поэтому CN - биссектриса угла FCE, что и требовалось доказать.
1) если это параллелогр., тогда уголА=углу С и угол В=углу D
рассмотрим треугольник АВК. Он прямоугольный (по условию). АВ=2ВК
есть такое св-во- если у прямоугольного треугольника катет равен половине гипотенузы, то он лежит против угла 30 градусов. т.е. угол А (как и С)=30
тогда В=180-30=150 т.е. D=50
2) рассмотрим красные треуг. ВО=ОD, AO=OC (по условию) улы ВОС и АОД равны как вертикальные. значит треуг. равны, соотв. стороны ВС и АД равны.
у зеленых треуг. аналогично. А если у четырехугольника противоположные стороны попарно равны, то такой 4-уг явл. параллелограммом (св-во)
Пусть другой конец диаметра, проходящего через точку C - точка Е.
Кроме того, пусть точка F на этой окружности лежит на продолжении CH.
Поскольку CE - диаметр, то угол EFC прямой, то есть EF II AB.
Биссектриса угла ABC делит дугу AFEB пополам. Пусть точка N на окружности лежит на продолжении биссектрисы, тогда дуги AN и NB равны (это дуги в четверть окружности). Из параллельности EF и AB следует что дуги AF и BE равны, следовательно, равны и дуги FN и NE.
Поэтому CN - биссектриса угла FCE, что и требовалось доказать.