А) Пусь прямые параллельные А и В пересечены секуещей С.Докажем, что соотственные углы, например 1 и 2 равны. Так как А параллельна В, то накрест лежащие углы 1 и 3 равны. Углы 2 и 3 равны как вертикальные.Из равенств угол 1 = 3 и 2 = 3 следует что, угол 1 = 2. б) Пусть прямые параллельные А и В пересечены секущей С.Докажем, например что угол 1+4=180 градусов, так как А параллельна В, то соответственные углы 1 и 2 равны. Углы 2 и 4 смежные,поэтому угол 2 +4 = 180 градусов. Следует, что угол 1 + 4 = 180 градусов
Проекция ромба АВСD ра плоскость α, проходящую через сторону АВ - параллелограмм АВС1D1. Отрезок C1D1 параллелен и равен отрезку АВ, так как СD параллельна и равна АВ (стороны ромба). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру. Проведем через вершину ромба D плоскость DНD1, перпендикулярную ребру АВ. Тогда в прямоугольном треугольнике DНD1 угол DHD1=60° (угол между плоскостями по определению). Тогда <D1DH=30° и D1H=DH*Sin30° (так как DH - гипотенуза). Sin30=1/2. D1H=DH/2. Заметим, что DH - высота ромба ABCD, а D1H - высота параллелограмма АВС1D1. Площадь ромба (формула): Sabcd=(1/2)*D*d. Sabcd=(1/2)*20*14=140см². Площадь параллелограмма (и, естественно, ромба) равна произведению высоты параллелограмма (ромба) на его сторону. Sabcd=AB*DH (1). Sabc1d1=AB*D1H (2). Разделим (2) НА (1): Sabc1d1/Sabcd = AB*D1H/AB*DH =D1H/DH =DH/(2DH) = 1/2. Sabc1d1=140*(1/2) = 70см².
б) Пусть прямые параллельные А и В пересечены секущей С.Докажем, например что угол 1+4=180 градусов, так как А параллельна В, то соответственные углы 1 и 2 равны. Углы 2 и 4 смежные,поэтому угол 2 +4 = 180 градусов. Следует, что угол 1 + 4 = 180 градусов
Отрезок C1D1 параллелен и равен отрезку АВ, так как СD параллельна и равна АВ (стороны ромба).
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
Проведем через вершину ромба D плоскость DНD1, перпендикулярную ребру АВ. Тогда в прямоугольном треугольнике
DНD1 угол DHD1=60° (угол между плоскостями по определению).
Тогда <D1DH=30° и D1H=DH*Sin30° (так как DH - гипотенуза).
Sin30=1/2. D1H=DH/2.
Заметим, что DH - высота ромба ABCD, а D1H - высота параллелограмма АВС1D1.
Площадь ромба (формула): Sabcd=(1/2)*D*d.
Sabcd=(1/2)*20*14=140см².
Площадь параллелограмма (и, естественно, ромба) равна произведению высоты параллелограмма (ромба) на его сторону.
Sabcd=AB*DH (1).
Sabc1d1=AB*D1H (2). Разделим (2) НА (1):
Sabc1d1/Sabcd = AB*D1H/AB*DH =D1H/DH =DH/(2DH) = 1/2.
Sabc1d1=140*(1/2) = 70см².