Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
Объяснение:ответ на первый вопрос кроется в условии) , это прямые призмы, две четырехугольные, и первая треугольная.
1. В основании лежит прямоугольный треугольник, катеты которого 5 и 12, а гипотенуза √(25+144)=13, площадь полной поверхности равна сумме площадей двух оснований и боковой поверхности.
2*5*12/2+(5+12+13)*6=60+180=240-площадь полной поверхности, а боковой 180
2. 2*16*6+(32+12)*19=192+836=1028- площадь полной поверхности, а боковой 836
3. 2*40*80+(80+160)*60=6400+14400=20800- полная поверхность, а площадь боковой 14400
Углы, смежные с внутренними углами многоугольника, называются внешними.
Сумма внешнего и внутреннего угла при одной вершине равна градусной мере развернутого угла =180°
Сумма внешних углов многоугольника равна разности между суммой всех таких развернутых углов и суммой внутренних углов многоугольника.
Как известно, сумма внутренних углов многоугольника находится по формуле N=180°•(n-2)
Поэтому сумма внешних углов
180°•n-180•(n-2)=180°•n-180°•n+360°=360°
Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360°.