Внешний угол - острый => смежный внутренний угол - тупой (сумма смежных углов 180°). Угол при основании равнобедренного треугольника не может быть тупым (углы при основании равнобедренного треугольника равны, сумма двух тупых углов больше 180°, сумма углов треугольника 180°) => тупой угол лежит против основания. В треугольнике против большего угла лежит большая сторона => основание больше боковой стороны.
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.
b - основание, a - боковые стороны
a=b-5
P= 2a+b <=> 2(b-5) +b =26 <=> b =36/3 =12
a=12-5=7
Высота к основанию в равнобедренном треугольнике является медианой.
cos(A)= b/2 /a =6/7
∠A=∠C= arccos(6/7) =31°
∠B=180°-2∠A =180°-62° =118°