В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
krikunnik
krikunnik
14.02.2022 06:02 •  Геометрия

Найдите квадрат расстояния между вершинами B и D2 многогранника, изображенного на рисунке. Все двугранные углы многогранника прямые.

Показать ответ
Ответ:
supermichail29
supermichail29
01.05.2020 01:40

1) Найдем длины сторон 4-хугольника по формуле расстояния между двумя точками:

MN=sqrt((5-2)^2+(3-2)^2)=sqrt(9+1)=sqrt(10);

NK=sqrt((6-5)^2+(6-3)^2)=sqrt(1+9)=sqrt(10);

KP=sqrt((3-6)^2+(5-6)^2)=sqrt(9+1)=sqrt(10);

PM=sqrt((2-3)^2+(2-5)^2)=sqrt(1+9)=sqrt(10).

Итак, в чет-ке MNPK длины сторон равны, значит это либо ромб, либо квадрат (тоже ромб!).

2) Найдем длины диагоналей 4-хугольника по формуле расстояния между двумя точками:

NP=sqrt((3-5)^2+(5-3)^2)=sqrt(4+4)=sqrt(8)=2*sqrt(2);

MK=sqrt((6-2)^2+(6-2)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2).

Итак, диагонали неравны, значит это ромб, ч.т.д.

3) Площадь ромба равна половине произведения длин его диагоналей:

S=(1/2)*2*sqrt(2)*4*sqrt(2)=4*2=8

 

0,0(0 оценок)
Ответ:
Сарфароз03
Сарфароз03
30.07.2021 17:55

\\\ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.


Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.


Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми


Прямые АA1 и BD1 скрещивающиеся.

 

Пусть точка О - точка пересечения диагоналей Квадрата ABCD.

 

АA1 перпендикулярна АB

AA1 перпендикулярна AD (следует из определения прямоугольног о параралелипипеда)

поєтому

AA1 перпендикулярна плоскости ABD а значит и любой прямой лежащей в этой плоскости в частности пряммой AO

 

Аналогично доказываем, что прямая BB1 и пряммая АО перпендикулярны

 

Пряммые АО и BD перпендикулярны как диагонали квадрата

 

Итак, ОА перпендикулярна двум пересекающимся прямым BB1 и BD плоскости BDB1, а значит она препендикулрна этой плоскости, а значит и перпендикулярна и любой прямой лежащей в этой плоскости, в частности

 АО перпендикулярна BD1.

 

Пряммая AA1 не лежащая в плосоксти BB1D паралельна двум прямым єтой плоскости (а именно BB1 и DD1 , следует из свойств прямоугольного параллелипипеда), поэтому она параллельна плоскости BB1D(содержащей пряммую BD1)

 

Далее пряммая АО перпендикулярна прямым AA1 и B1D. По определению расстояние от ребра AA1 до диагонали параллелепипеда BD1 это отрезок

АО

 

ABCD - квадрат со стороной равной а, поєтому

его диагональ равна AC=a*корень(2)

AO=1/2AC=1/2*a*корень(2)

ответ: a*корень(2)/2

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота