Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)
Объяснение:
А) х=(х₁+х₂):2 ,у=(у₁+у₂):2 ,где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка , (х;у)-координаты середины.
А(2;4) ,В(8;-4) . О-середина АВ , найдем ее координаты.
х(О)= ( х(А)+х(В) )/2 у(О)= ( у(А)+у(В) )/2
х(О)= ( 2+8 )/2 у(О)= ( 4-4 )/2
х(О)= 5 у(О)= 0
О( 5 ; 0) .
В) d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка.
АО=√( (5-2)²+(0-4)² )=√(9+16)=5.
С) Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , (х₀ ; у₀)-координаты центра.
(x – 5)²+ (y – 0)² = 5²
(x – 5)²+ y² =25