Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.
Объяснение:
Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.
Объяснение:
Данный двугранный угол равен линейному SEO, где Е - середина стороны AD.
Квадрат со стороной 18 имеет диагональ 18 корней из 2, половина этой диагонали - отрезок ОА - равен 9 корней из 2. Из треугольника ASO находим:
SA = 18 корней из 2.
Поскольку в основании квадрат, то SA = SD, треугольник ASD равнобедренный с тремя известными нам сторонами: 18 корней из 2; 18 корней из 2; 18.
Высота, проведенная к основанию SE = 9 корней из 7.
Отрезок ОЕ = 18/2 = 9
Косинус угла SEO равен (корень из 7)/7
Искомый угол равен arccos√7/7.