Можно по т.Пифагора найти половину второй диагонали из одного из прямоугольных треугольников, на которые диагонали при пересечении делят ромб, и затем умножить на 2. Как правило, именно такой решения дается к подобной задаче. Есть другой решения этой задачи. Вспомним, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Т.е. d²+D²=2•(a²+b²) Ромб - параллелограмм с равными сторонами. Тогда d²+D²=4•a²⇒ 12²+D²=4•100 ⇒ D²=400-144=256 D=√256=16 см
Как правило, именно такой решения дается к подобной задаче.
Есть другой решения этой задачи.
Вспомним, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Т.е. d²+D²=2•(a²+b²)
Ромб - параллелограмм с равными сторонами.
Тогда d²+D²=4•a²⇒
12²+D²=4•100 ⇒
D²=400-144=256
D=√256=16 см
Объяснение:
4) Трапеция, имеющая прямые углы при боковой стороне, называется. 360-90-90-65=115° L M=115°
L F=90°
5) равнобедренная трапеция. углы при любом основании равны; сумма противоположных углов равна 180°
если рассматривать KL и NM как параллельные прямые которые пересекаются прямой LN то углы LNM и NLK вертикальные, а значит равные
треугольник NKL равнобедренный и углы при основании равные. LNM и NLK=30° KNL=NLK=30°
N=M=30+30=60° K=L= (360-60-60):2=120°
6) FMK=90° K=180-90-35=55° равнобедренная трапеция. углы при любом основании равны
K=F 360-55-55=250° R= 250:2=125° R=M