Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие не параллельны. Итак, в трапеции АВСД один из углов при боковой стороне СД=135°. Сумма углов, прилежащих к одной стороне трапеции, равна 180. Следовательно, угол СДА=45° Опустим из С к основанию АД перпендикуляр СН. Треугольник СНД - равнобедренный прямоугольный, т.к. угол НСД равен 90°-45°=45° Длина катетов равнобедренного прямоугольника равна половине длины гипотенузы, умноженной на √2. Или, кому привычнее, можно найти по т.Пифагора. Отсюда катеты этого треугольника равны 8,5√2 ВН₁=СН как равные перпендикуляры между параллельными прямыми. В треугольнике ВАН₁ ∠ ВАН=∠АВС=30°, как накрестлежащий при пересечении параллельных прямых секущей. ВН₁=8,5√2 АВ=ВН₁:sin(30°) АВ=17√2
Итак, в трапеции АВСД один из углов при боковой стороне СД=135°.
Сумма углов, прилежащих к одной стороне трапеции, равна 180. Следовательно, угол СДА=45°
Опустим из С к основанию АД перпендикуляр СН.
Треугольник СНД - равнобедренный прямоугольный, т.к. угол НСД равен 90°-45°=45°
Длина катетов равнобедренного прямоугольника равна половине длины гипотенузы, умноженной на √2.
Или, кому привычнее, можно найти по т.Пифагора.
Отсюда катеты этого треугольника равны 8,5√2
ВН₁=СН как равные перпендикуляры между параллельными прямыми.
В треугольнике ВАН₁ ∠ ВАН=∠АВС=30°, как накрестлежащий при пересечении параллельных прямых секущей.
ВН₁=8,5√2
АВ=ВН₁:sin(30°)
АВ=17√2