Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
ответ:Рисунок 1.47
Угол В вписанный,равен 90 градусов,опирается на дугу 180 градусов
Угол К вписанный,опирается на дугу
180+40=220 градусов и равен половине ее градусной меры
<В=110 градусов
Рисунок 1.48
Угол В вписанный,опирается на дугу
360-(120+80)=160 градусов
<АВD опирается на дугу
160:2=80 градусов
На эту же дугу опирается центральный угол АОD и равен ее градусной мере
<АОD=80 градусов
Рисунок 1.49
Радиус и касательная образуют угол 90 градусов.
Дуга ВСА равна 180 градусов,т к диаметр делит окружность пополам
360:2=280 градусов
Угол АВС вписанный и опирается на дугу в два раза больше его градусной меры
59•2=118 градусов
Угол ВАС опирается на дугу
180-118=62 градуса
он вписанный и равен половине градусной меры дуги
62:2=31 градус
Рисунок 1.50
<Р вписанный и равен половине дуги,на которую он опирается
Дуга равна
АЕ=55•2=110 градусов
< К=(110-40):2=35 градусов
Рисунок 1.51
<D вписанный,равен половине дуги,на которую он опирается
Дуга равна
50•2=100 градусов
Дуга FDG=360-100=260
<TFG=260:2=130 градусов
Объяснение:
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь