В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
katytucan1
katytucan1
26.11.2022 23:06 •  Геометрия

Найди координаты точек, которые являются серединами сторон четырехугольника с вершинами M(2;4)M(2;4) , N(6;0)N(6;0) , K(-1;4)K(−1;4) и L(-5;1)L(−5;1) .


Найди координаты точек, которые являются серединами сторон четырехугольника с вершинами M(2;4)M(2;4)

Показать ответ
Ответ:
ольга1646
ольга1646
16.03.2022 03:45
Легко можно показать , что ∠BAC =90°. Соединяем точка D с вершиной C треугольника ABC.  ∠CAD =∠90° ⇒CD диаметр окружности описанной около треугольника  CAD.  DC⊥BC (BC касательная ; радиус ⊥ касательной в точке касания ). В треугольнике BCD  BC и CD катеты ,
BD-гипотенуза , CA высота опущенная на гипотенузе.
Известно AC² =AB*AD  ⇒AC  =√(5*4) =2√5 .
Из ΔCAD по теореме Пифагора:  CD =√(AC² +AD²) =√(20 +25) =3√5.
CD  =2R₂⇒ R₂ =CD/2 = 3√5 / 2.
Аналогично продолжая CD до  точки E пересечения с первой окружности можно определить радиус первой окружности _R₁.
---
Или BC =2√R₁*R₂.⇔BC² =4*R₁*R₂.⇔BA²+AC² =4*R₁*R₂⇔
4²+20 =4R₁*3√5 / 2⇒R₁ =6/√5 = 6√5 / 5 .
0,0(0 оценок)
Ответ:
Max04032003
Max04032003
08.09.2020 23:03
 . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т. е. 720o, поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: ( – очевидно.  . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис. 1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние, т. е. является центром описанной около этого треугольника окружности радиуса .

(8) (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис. 1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1, то точка O одинаково удалена от всех граней (на расстояние ), а т. к. все грани – остроугольные треугольники, то O – центр вписанной сферы.

( . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то BAC = BDC, поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис. 2). Аналогично для всех пар смежных граней. Таким образом,

BDC + CDA + ADB = BAC+ CBA + ACB = 180o.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота