1) Пусть АС=х. По условию задачи, тр. АВС-равнобедренный,то боковые стороны равны: АВ=ВС. Также по условию АВ=2АС (но АС=х),следовательно АВ=ВС=2х. Периметр-сумма длинн всех сторон треугольника АВС( Р=АВ+ВС+АС), получаем уравнение Р=2х+2х+х, но по условию Р=20,тогда имеем: 20=2х+2х+х 20=5х 5х=20 х=20/5 х=4. За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8. ответ(1): 4,8,8. 2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным. ответ(2):равнобедренный
1)Длины сторон треугольника равны a, b, c. между этими числами имеется закономерность: a2 =b2+c2+bc. Чему равен угол, лежащий против стороны a ? Решение: Пусть против стороны а лежит угол А. По теореме косинусов а2=b2+c2-2bc*cosA По условию a2=b2+c2+bc. Значит bc=-2bc*cosA. Отсюда cosA=-1/2. A=120 2)Найдите длину стороны AC треугольника ABC, где угол B тупой, AB=13, BC=2, sinB=5/13 Решение: По теореме косинусов AC2=AB2+BC2-2*AB*BC*cosBcos2B=1-sin2B=1-25/169=144/169 Так как по условию угол В - тупой, то cosB=-12/13 Далее подставляем известные значения в формулу теоремы косинусов:AC2= 132+22-2*13*2*(-12/13)=221 Следовательно, AC=√221
20=2х+2х+х
20=5х
5х=20
х=20/5
х=4.
За х мы брали сторону АС,то есть АС=4; АВ=ВС=2х=2*4=8.
ответ(1): 4,8,8.
2) АД-медиана тр.АВС. Медиана-это отрезок,соединяющий вершину треугольника,с серединой противоположной стороны, тое сть получим,что медиана АД разделит сторону ВС на два равных отрезка: ВД=ДС. Нам известно,что ВС=8, тогда ВД=ДС=8/2=4. Рассмотрим тр. АДС. АС=4, ДС=4. Если две боковые стороны треугольника равны,то этот треугольник-равнобедренный. Следовательно: тр.АДС, по внешнему виду будет равнобедренным.
ответ(2):равнобедренный
Решение:
Пусть против стороны а лежит угол А. По теореме косинусов а2=b2+c2-2bc*cosA
По условию a2=b2+c2+bc.
Значит bc=-2bc*cosA.
Отсюда cosA=-1/2. A=120
2)Найдите длину стороны AC треугольника ABC, где угол B тупой, AB=13, BC=2, sinB=5/13
Решение:
По теореме косинусов AC2=AB2+BC2-2*AB*BC*cosBcos2B=1-sin2B=1-25/169=144/169
Так как по условию угол В - тупой, то cosB=-12/13
Далее подставляем известные значения в формулу теоремы косинусов:AC2= 132+22-2*13*2*(-12/13)=221
Следовательно, AC=√221