Если чертёж сделал, то вот решение: ВС=8+4=12см, ВС = АD = 12 см(так как противоположные стороны параллелограма равны). Рассмотрим треугольник АВЕ. угол ВАЕ и угол ЕАD равны, так как АЕ - биссектриса. угол ЕАD= углу АЕB(как накрест лежащие при прямых ВС параллельно АD и секущей AE) Объединяешь выше написанные равенства и получаешь , что угол BAE= BEA, значит треугольник АВС-равнобедренный, так как углы при основании равны), поэтому АВ=ВЕ=8см. Тогда АВ=СD=8см(свойство1 параллелограмма) ответ:8см;12см;8см;12см.
Рассмотрим треугольник АВЕ.
угол ВАЕ и угол ЕАD равны, так как АЕ - биссектриса.
угол ЕАD= углу АЕB(как накрест лежащие при прямых ВС параллельно АD и секущей AE)
Объединяешь выше написанные равенства и получаешь , что угол BAE= BEA, значит треугольник АВС-равнобедренный, так как углы при основании равны), поэтому АВ=ВЕ=8см.
Тогда АВ=СD=8см(свойство1 параллелограмма)
ответ:8см;12см;8см;12см.
∠АОВ = ∠СОВ = 110°, значит
∠AOE = ∠COE = 180° - 110° = 70° как углы, смежные с равными углами
В треугольнике АОС OE является высотой и биссектрисой, значит ΔАОС равнобедренный, ⇒
АО = ОС,
∠АОВ = ∠СОВ - по условию,
ОВ - общая сторона для треугольников АОВ и СОВ, следовательно
ΔАОВ = ΔСОВ по двум сторонам и углу между ними. ⇒
АВ = ВС, т.е. ΔАВС равнобедренный.
Найти длины боковых сторон по таким данным невозможно.
б)
∠BOD = ∠AOE = 70° как вертикальные
ΔBOD: ∠ОВD = 180° - 90° - 70° = 20°.
Так как ΔАВС равнобедренный, BE - высота и биссектриса, значит
∠АВС = 2·∠ОВD = 40°.
∠ВАС = ∠ВСА = (180° - 40°)/2 = 70° так как углы при основании равнобедренного треугольника равны.
ответ: 40°, 70°, 70°.