Основание пирамиды ромб с большей диагональю d и острым углом альфа .Все двугранные углы при основании пирамиды равны бета. Найдите площадь полной поверхности пирамиды
Площадь S полной поверхности пирамиды равна сумме S1 –(площади основания), и S2 –(площади 4-х равных боковых сторон).
Примем сторону основания равной а. (см. рисунок в приложении)
Тогда S1=a²•sinα
S2=SH•4a:2=SH•2a
S=a²•sinα+2a•SH
Так как боковые грани наклонены к основанию под одинаковым углом, радиус r=ОН вписанной в основание окружности равен половине высоты h основания и по т. о трёх перпендикулярах является проекцией высоты SH боковой грани, а угол SHO= β =>
Основание пирамиды ромб с большей диагональю d и острым углом альфа .Все двугранные углы при основании пирамиды равны бета. Найдите площадь полной поверхности пирамиды
Площадь S полной поверхности пирамиды равна сумме S1 –(площади основания), и S2 –(площади 4-х равных боковых сторон).
Примем сторону основания равной а. (см. рисунок в приложении)
Тогда S1=a²•sinα
S2=SH•4a:2=SH•2a
S=a²•sinα+2a•SH
Так как боковые грани наклонены к основанию под одинаковым углом, радиус r=ОН вписанной в основание окружности равен половине высоты h основания и по т. о трёх перпендикулярах является проекцией высоты SH боковой грани, а угол SHO= β =>
SH=r=OH:cosβ
S2=[2a•(a•sinα)/2]:cosβ=a²•sinα/cosβ
S=a²•sinα+ a²•sinα/cosβ
Выразим а² из ∆ BCD по т.косинусов.
В ∆ DCB большая диагональ BD=d
<DCB=180°- < CDA
cos<DCB= - cosCDA= -cosα
По т.косинусов BD²=CD²+BC²-2CD•CB•(-cosα )
d²=a²+a²-2a²•(-cosα )=>
Подставив в S значение а² , получим:
S=d²•sinα•(cosβ+1):2(1+cosα)cos β (ед. площади)
Если стороны BC = а (считаем эту сторону основанием), AC = b и AB = c, то периметр равен 2*p = (a + b +c);
Отрезок PQ = t = 2,4; точка Р на стороне b, Q на стороне c.
Точки касания вписанной окружности стороны ВС - точка M, стороны АС - точка К, стороны АВ - точка Е.
Точка касания вписанной окружности отрезком PQ - точка Т.
Если обозначить отрезки от вершин до точек касания ВЕ = ВМ = x, СК = СМ = y и АК = АЕ = z, то
a = x + y;
b = x + z;
c = y + z;
Периметр меньшего треугольника (который отсечен заданным отрезком касательной) равен 2*z, поскольку РК = РТ; и QE = QT.
Отсюда легко видеть, что ПОЛУпериметр отсеченного треугольника равен p - a; (по условию, р = 10)
Поскольку эти треугольники подобны (исходный и отсеченный отрезком касательной), то ПОЛУпериметры относятся так же как стороны, и
(p - a)/p = t/a;
(10 - a)/10 = 2,4/a;
это легко привести к виду
a^2 - 10*a + 24 = 0;
a = 4 или 6.
Получилось 2 решения. :(