Нарисуйте окружность с центром в точке 0. Изобразите центральный угол АОС и
вписанный угол ABC (точки ОиВ лежат по одну сторону от хорды AC).
1) с транспортира измерьте углы АВС и АОС, запишите
полученные данные.
2) Сравните градусные меры углов.
3) Сформулируйте свойство о связи градусной меры центрального и
вписанного угла.
4) Запишите, чему равна дуга АС. (Если дуга AC окружности с центром 0
меньше полуокружности или является полуокружностью, то ее градусная
мера считается равной градусной мере центрального угла АОС).
5) Сформулируйте свойство о градусной мере вписанного угла ABC и дуги
АС, на которую он опирается.
18,09
Объяснение:
1) АВ = 1 + 2 + 3 = 6
ВС = 3 + 1 + 2 = 6
СD = 2 + 3 + 1 = 6
AD = 1 + 4 + 1 = 6
Так как все стороны четырёхугольника равны, то данная фигура является ромбом.
2) Находим площадь ромба:
S = DC · BC · sin 60° = 6 · 6 · √3/2 = 18√3
3) Чтобы найти площадь заштрихованной фигуры, необходимо от площади ромба отнять площади 4-х не заштрихованных фигур.
А для этого надо знать все углы ромба.
∠А = ∠С = 60° - так как противоположные углы ромба равны;
∠D = ∠B = 180° - 60° = 120° - так как сумма углов, прилежащих к одной стороне ромба, равна 180°.
4) Площадь сегмента при вершине А равна:
π · 1² · (60°/360°) = π/6.
5) Площадь сегмента при вершине В равна:
π · 3² · (120°/360°) = 9π/3 = 3π.
6) Площадь сегмента при вершине С равна:
π · 2² · (60°/360°) = 4π/6 = 2π/3.
7) Площадь сегмента при вершине D равна:
π · 1² · (120°/360°) = π/3.
8) Сумма площадей вычитаемых сегментов равна:
π/6 + 3π + 2π/3 + π/3 = (4 1/6)π
9) Площадь заштрихованной фигуры:
18√3 - (4 1/6)π = 18 (√3 - 25π/108) ≈ 18 · (1,732 - 25/6 · 3,14) ≈ 18,093 ≈ 18,09
ответ: 18 (√3 - 25π/108) ≈ 18,09
угол прямоугольника равен 90°
диагональю он делится в отношении 4: 5, т.е. на углы
90: (4+5)*4=40°
и 90: (4+5)*5=50°
диагонали прямоугольника равны и точкой пересечения со сторонами прямоугольника образуют равнобедренные треугольники, сумма углов которых 180°
углы треугольника с боковой стороной равны 40°,40°,100°
углы треугольника, образованного диагоналями с основанием, равны
50°,50°,80°.
ответ: диагонали прямоугольника при пересечении образуют углы 100°и 80°