1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136
1)Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм. Пусть в четырехугольнике абсд стороны аб и сд параллельны и аб=сд проведем диагональ ас, делящую данный четырехугольник на два треуг-а: абс и сда. Эти треуг-и равны по двум сторонам и углу между ними, поэтому уголСАД=уголБСА, но эти углы накрест лежащии при пересечении прямых АД и БС секущей АС, следовательно, ад//бс Таким образом, в четырехугольнике АБСД противоположные стороны попарно параллельны, а значит АБСД- параллелограмм 2) Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм. Проведем диаг АС данного четырехугольника АБСД, делящую его на треуг-и АБС и СДА. Эти треуг-и равны по трем сторонам, поэтому угл БАС равен углу САД=> аб//сд. Так как аб=сд и аб//сд, то абсд - параллелограмм.
136
Объяснение:
1) по особому свойству ромба - диагонали биссектрисы своих углов => угол EKA = 60°
2) достроим вторую диагональ. по особому свойству ромба - диагонали ромба взаимоперпендикулярны т.е. равны 90° => в прямоугольном треугольнике OEK (пусть точка пересечения диагоналей - т. О) второй острый угол равен 90-60=30°
3) по свойству параллелограмма (ромб - частый случай параллелограмма) диагонали в точке пересечения делятся пополам => OK =34:2=17
4) катет , лежащий против угла 30° ( угол KEO и катет OK) равен половине гипотензу, т.е. EK = 2OK = 17*2 = 34 => P AEKH = 34*4 = 136