Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
ответ: 25 (ед. длины).
Объяснение:
Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
Решение.
DH найдем через площадь ∆ АВС и его высоту СН.
Ѕ(АВС)=АС•ВС/2
Ѕ(АВС)=СН•АВ/2 ⇒ АС•ВС=СН•АВ
АВ=√(АС²+ВС²)=√(40²+30²)=50
АС•ВС=40•30=1200
СН=АС•ВС:АВ=1200:50=24
DH=√(DC^2+CH^2)=√(49+576)=25
DH=25.