Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны))) из равенства углов ВСА и ВDA и равенства вертикальных углов ВOC и AOD ((точка О -- точка пересечения диагоналей АС и BD выпуклого 4-угольника))) следует, что треугольники ВОС и АОD подобны по двум углам... следовательно, верна пропорция: OD / OC = AO / OB равносильная этой пропорция тоже очевидно верна: OD / АO = OС / OB (((т.к. OD*OB = OC*AO ---> OD = OC*AO / OB...))) а это отношение можно прочесть так: две стороны треугольника COD пропорциональны двум сторонам треугольника АОВ и углы COD и АОВ между этими сторонами равны ((как вертикальные))), следовательно треугольники AOB и COD -- подобны. Из подобия следует равенство углов))) т.е. против OD -- угол OCD и против АО -- угол АВО ---> углы против соответственных сторон -- равные углы)))
(Нудная задача. Здесь и далее курсив можно не читать.) Центр вписанного шара O1 проектируется на основание ABC в центр правильного треугольника ABC (пусть это O2) - это следует из того, что пирамида "переходит в себя" при повороте вокруг SO2 на 120°; Далее, линия соединяющая центры шаров OO1 проектируется на основание на отрезок AO2. Этот отрезок - радиус описанной вокруг ABC окружности, он равен удвоенному радиусу вписанной в ABC окружности и равен высоте пирамиды, поскольку ребро наклонено к основанию под углом в 45°. Далее, прямая BD - это то же самое, что и прямая O2D, где D - середина AC. Ясно, что O2D перпендикулярно плоскости AOD, так как перпендикулярно двум прямым в этой плоскости - AC и OA (OA перпендикулярно всей плоскости ABC). Поэтому нужный угол - это угол ADO, и для его вычисления надо найти радиус шара с центром в O. Я обозначу этот радиус R, а радиус вписанного в пирамиду шара r. 1) Пусть радиус ВПИСАННОЙ в ABC окружности равен 1. То есть O2D = 1; (Это не ограничивает общность.) Тогда AO2 = 2 = SO2; сторона основания равна 2√3; площадь правильного тр-ка в основании Sabc = (2√3)^2*√3/4 = 3√3; апофема равна SD = √(2^2 + 1^2) = √5; площадь боковой грани равна 2√3*√5/2 = √15; площадь полной поверхности пирамиды равна Spol = 3√3(√5 + 1); объем пирамиды равен V = Sabc*SO2/3 = (3√3)*2/3 = 2√3; отсюда радиус вписанного в пирамиду шара равен r = 3V/Spol = 2/(√5 + 1); (Это соотношение совершенно аналогично известному S = pr для треугольника. И получается оно точно так же - надо соединить центр вписанного шара с вершинами и рассматривать пирамиду как сумму - в данном случае - четырех пирамид с высотами, равными радиусу вписанного шара. Отсюда V = Spol*r/3;) 2) Фигура AOO1O2 - прямоугольная трапеция. Её основания равны R и r, а боковые стороны R + r и 2 (вот здесь учитывается касание шаров, ясно, что точка касания лежит на линии центров). Поскольку r уже вычислено, найти R нетрудно. (R + r)^2 = (R - r)^2 + 2^2; или 4Rr = 4; R = 1/r; (занятное соотношение); R = (√5 + 1)/2; поскольку AD = √3; то искомый угол ADO = Ф имеет тангенс tg(Ф) = (√5 + 1)/2√3;
Если две стороны одного треугольника пропорциональны
двум сторонам другого треугольника и углы,
заключенные между этими сторонами, равны,
то такие треугольники подобны)))
из равенства углов ВСА и ВDA и равенства вертикальных углов ВOC и AOD
((точка О -- точка пересечения диагоналей АС и BD выпуклого 4-угольника)))
следует, что треугольники ВОС и АОD подобны по двум углам...
следовательно, верна пропорция:
OD / OC = AO / OB
равносильная этой пропорция тоже очевидно верна:
OD / АO = OС / OB (((т.к. OD*OB = OC*AO ---> OD = OC*AO / OB...)))
а это отношение можно прочесть так:
две стороны треугольника COD
пропорциональны двум сторонам треугольника АОВ и
углы COD и АОВ между этими сторонами равны ((как вертикальные))),
следовательно треугольники AOB и COD -- подобны.
Из подобия следует равенство углов)))
т.е. против OD -- угол OCD и против АО -- угол АВО
---> углы против соответственных сторон -- равные углы)))
Центр вписанного шара O1 проектируется на основание ABC в центр правильного треугольника ABC (пусть это O2) - это следует из того, что пирамида "переходит в себя" при повороте вокруг SO2 на 120°; Далее, линия соединяющая центры шаров OO1 проектируется на основание на отрезок AO2. Этот отрезок - радиус описанной вокруг ABC окружности, он равен удвоенному радиусу вписанной в ABC окружности и равен высоте пирамиды, поскольку ребро наклонено к основанию под углом в 45°. Далее, прямая BD - это то же самое, что и прямая O2D, где D - середина AC. Ясно, что O2D перпендикулярно плоскости AOD, так как перпендикулярно двум прямым в этой плоскости - AC и OA (OA перпендикулярно всей плоскости ABC).
Поэтому нужный угол - это угол ADO, и для его вычисления надо найти радиус шара с центром в O.
Я обозначу этот радиус R, а радиус вписанного в пирамиду шара r.
1) Пусть радиус ВПИСАННОЙ в ABC окружности равен 1.
То есть O2D = 1; (Это не ограничивает общность.)
Тогда AO2 = 2 = SO2;
сторона основания равна 2√3;
площадь правильного тр-ка в основании Sabc = (2√3)^2*√3/4 = 3√3;
апофема равна SD = √(2^2 + 1^2) = √5;
площадь боковой грани равна 2√3*√5/2 = √15;
площадь полной поверхности пирамиды равна Spol = 3√3(√5 + 1);
объем пирамиды равен V = Sabc*SO2/3 = (3√3)*2/3 = 2√3;
отсюда радиус вписанного в пирамиду шара равен r = 3V/Spol = 2/(√5 + 1);
(Это соотношение совершенно аналогично известному S = pr для треугольника. И получается оно точно так же - надо соединить центр вписанного шара с вершинами и рассматривать пирамиду как сумму - в данном случае - четырех пирамид с высотами, равными радиусу вписанного шара. Отсюда V = Spol*r/3;)
2) Фигура AOO1O2 - прямоугольная трапеция. Её основания равны R и r, а боковые стороны R + r и 2 (вот здесь учитывается касание шаров, ясно, что точка касания лежит на линии центров). Поскольку r уже вычислено, найти R нетрудно.
(R + r)^2 = (R - r)^2 + 2^2; или 4Rr = 4; R = 1/r; (занятное соотношение);
R = (√5 + 1)/2;
поскольку AD = √3; то искомый угол ADO = Ф имеет тангенс
tg(Ф) = (√5 + 1)/2√3;