1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
1) ребро вс тетраэдра авсd перпендикулярно к плоскости авd. bc=12 в треугольнике авd угол в - прямой, угол а равен 30 градусов, ad=14. какие из следующих утверждений являются верными? 1. плоскость всd перпендикулярна к плоскости авd 2. расстояние от точки d до плоскости аbc равно 7 3. расстояние от точки a до прямой cd равно 14 4. тангенс угла между плоскостью авd и плоскостью cbd равен 0 2) ребро мс тетраэдра авсм перпендикулярно к плоскости авс, мс=12. в треугольнике авс угол с - прямой, угол а равен 30 градусов, ав=18. какие из следующих утверждений являются верными? 1. плоскость всм перпендикулярна к плоскости авс 2. расстояние от точки в до плоскости асм равно 9 3. расстояние от точки м до прямой ав равно ам 4. котангенс угла между плоскостью авс и плоскость асм равен 0,75
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас