В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
consenttime
consenttime
26.03.2021 05:23 •  Геометрия

Накреслить за до транспортира ∆ MQN=130°. Побудуйте сумижний з ним кут за умови,що QM-ихня спильна сторона .обчислить його за градосною миру ​

Показать ответ
Ответ:
liza1430
liza1430
12.10.2022 02:56

Дано:

ΔABC - Тупоугольный равнобедренный

∠ABC = 150°    AB = BC    ∠(ABC,α) = 60°

CC₁⊥α   BC₁ = 12 см

Найти:

S(ΔABC) - ?       ∠CBC₁ - ?

1) Проведем высоту BH ⇒ BH⊥AC, следовательно:

∠ABH = 1/2 × ∠ABC = 1/2 × 150° = 75° (по свойству высоты равнобедренного треугольника).

∠BAH = ∠BCH = ∠AHB - ∠ABH = 90° - 75° = 15°

2) Рассмотрим ΔBC₁C:

∠BC₁C = 90°, ∠CBC₁ = ∠(ABC,α) = 60° так как BC₁∈α, a BC - сторона ΔABC ⇒ ∠C₁CB = ∠CC₁B - ∠CBC₁ = 90° - 60° = 30° ⇒ ΔBC₁C - прямоугольный ⇒ BC = 2BC₁ = 2×12 см = 24 см ⇒ AB = BC = 24 см

3) Далее воспользуемся с формулой площади ΔABC с известным углом:

S(ΔABC) = AB×BC×sin∠ABC - Площадь треугольника ABC с известным углом.

S(ΔABC) = 24 см × 24 см × sin∠150° = 576 см² × 1/2 = 288 см²

ответ: S(ΔABC) = 288 см², ∠CBC₁ = 60°

P.S. Рисунок показан в файле внизу↓

0,0(0 оценок)
Ответ:
superbomber
superbomber
05.05.2021 16:47

Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = \frac{k1}{x} и y = \frac{k2}{x} (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.

Объяснение:

Прямая АВ , проходящая через начало координат имеет вид у=кх

Найдем точки пересечения этой прямой и гипербол:

y = \frac{k1}{x} и у=кх →   \frac{k1}{x} = кх , х²= \frac{k1}{k}  ;  x = \sqrt{\frac{k1}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k1}{k} }  .

y = \frac{k2}{x} и у=кх →    \frac{k2}{x} = кх , х²= \frac{k2}{k}  ;  x = \sqrt{\frac{k2}{k} }  (   т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* \sqrt{\frac{k2}{k} }  .

По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ.   Найдем ОА и ОВ по формулам расстояния между точками : ОА= \sqrt{\frac{k1}{k} +k^{2}*\frac{k1}{k} } = \sqrt{\frac{k1}{k} +k*k1} ,

ОB= \sqrt{\frac{k2}{k} +k^{2}*\frac{k2}{k} } = \sqrt{\frac{k2}{k} +k*k2}  .

Тогда ОМ²= \sqrt{\frac{k1}{k} +k*k1} *  \sqrt{\frac{k2}{k} +k*k2}   =  \sqrt{k1*(\frac{1}{k}+k) } *\sqrt{k2*(\frac{1}{k}+k) } =( \frac{1}{k}+k) *\sqrt{k1*k2}  .  Т.к   \frac{1}{k}+k ≥2  ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное  2 , а к1*к2=144,    то ОМ²=2*√144=2*12=24.

===========================================

Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."

Формула расстояния между точками  d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.


с задачей по геометрии! Она лёгкая, но я запуталась
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота