ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
на сторонах угла∡abc точки a и c находятся в равных расстояниях от вершины угла ba=bc. через эти точки к сторонам угла проведены перпендикуляры ae⊥ba cd⊥bc.
1. чтобы доказать равенство δafd и δcfe, докажем, что δbae и δbcd, по второму признаку равенства треугольников:
ba=bc
∡baf=∡bcf=90°
∡abc — общий.
в этих треугольниках равны все соответсвующие эелементы, в том числе bd=be, ∡d=∡e.
если bd=be и ba=bc, то bd−ba=be−bc, то есть ad=ce.
очевидно равенство δafd и δcfe также доказываем по второму признаку равенства треугольников:
ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
tg a = 2/((d₁/d₂)-(d₂/d₁)) находим
tg a = 2/((2√3 /2)-(2/2√3)) = 2/(√3-1/√3)=
2/(√3-√3/3=2/(√3(1-1/3)= 2/(√3(2/3)=
2√3/2=√3
tg 60°=√3
углы ромба 60° и 120°
подробнее - на -
объяснение:
ответ:
image
на сторонах угла∡abc точки a и c находятся в равных расстояниях от вершины угла ba=bc. через эти точки к сторонам угла проведены перпендикуляры ae⊥ba cd⊥bc.
1. чтобы доказать равенство δafd и δcfe, докажем, что δbae и δbcd, по второму признаку равенства треугольников:
ba=bc
∡baf=∡bcf=90°
∡abc — общий.
в этих треугольниках равны все соответсвующие эелементы, в том числе bd=be, ∡d=∡e.
если bd=be и ba=bc, то bd−ba=be−bc, то есть ad=ce.
очевидно равенство δafd и δcfe также доказываем по второму признаку равенства треугольников:
ad=ce
∡daf=∡ecf=90°
∡d=∡
объяснение: