Надо решить: угол аов = 110(градусов) , угол аос = 160(градусов). найдите угол вос, если лучи ов и ос лежат: 1) в одной. 2) в разных полуплоскостях относительно прямой, содержащей луч оа.
где h - высота треугольника, a - основание, на которое опускается высота.
Медиана образует новый треугольник ABD, в котором известны две стороны и один из углов. Применим теорему косинусов
b^2 = a^2+c^2-2ac*cosβ,
где неивзестна лишь величина c. решением получившегося квадратного уравнения будут два корня, один из которых отбрасываем, так как он отрицателен (длина не может быть отрицательной). Таким образом, длина основания a составляет
a = 2*c = 2*1/2*(sqrt(3)+sqrt(15)) = (sqrt(3)+sqrt(15),
где sqrt() - корень числа.
теперь нужно найти высоту. Она лежит все в том же в треугольнике ABD и образует прямой угол с основанием. Таким образом, просто применяем формулу синуса угла, который нам известен и находим, что высота равна
отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
Площадь треугольника определяется формулой
S = (a*h)/2,
где h - высота треугольника, a - основание, на которое опускается высота.
Медиана образует новый треугольник ABD, в котором известны две стороны и один из углов. Применим теорему косинусов
b^2 = a^2+c^2-2ac*cosβ,
где неивзестна лишь величина c. решением получившегося квадратного уравнения будут два корня, один из которых отбрасываем, так как он отрицателен (длина не может быть отрицательной). Таким образом, длина основания a составляет
a = 2*c = 2*1/2*(sqrt(3)+sqrt(15)) = (sqrt(3)+sqrt(15),
где sqrt() - корень числа.
теперь нужно найти высоту. Она лежит все в том же в треугольнике ABD и образует прямой угол с основанием. Таким образом, просто применяем формулу синуса угла, который нам известен и находим, что высота равна
sin 30 = h/BD,
h = sin 30*BD = 1/2*1 = 1/2.
Таким образом, площадь треугольника составляет
S = 1/2*1/2*(sqrt(3)+sqrt(15)).
S = (sqrt(3)+sqrt(15))/4.
отношение сторон 5:12:13 предполагает, что каждую из них можно разделить на какое-то количество равных отрезков (обозначь этот равный /единичный отрезок как хочешь
х,n, kну пусть как обычно х)
тогда стороны 5x , 12x , 13 x
по теореме Пифагора в прямоугольном треугольнике
c^2 =a^2+b^2
для наших сторон
(13x)^2 = (5x)^2 + (12x)^2
надо доказать, что это тождество СОБЛЮДАЕТСЯ
(13x)^2 = (5x)^2 + (12x)^2 < разделим обе части на x^2
13^2 = 5^2 +12^2
169 = 25 +144 = 169
ДОКАЗАНО прямоугольный треугольник