ответ: S=45,84(ед²)
Объяснение:
Проведём ещё высоту АН. Она делит трапецию так на прямоугольный треугольник АВН и прямоугольник ВСДН так, что НД=ВС, а также ВН=СД=4.
Рассмотрим ∆АВН. В нём угол А=30°, а катет ВН, лежащий напротив него равен половине гипотенузы АВ (свойство угла 30°) поэтому АВ=ВС=НД=4×2=8.
Найдём АН по теореме Пифагора:
АН²=АВ²–ВН²=8²–4²=64–16=48
АН=√48=4√3
Тогда АД=АН+НД=4√3+8
Площадь трапеции вычисляется по
формуле:
S=(ВС+АД)÷2×4=8+(8+4√3)×4/2=
=(8+8+4√3)×2=(16+4√3)2=32+8√3(ед²)
Можно так и оставить, а можно вычислить приблизительное значение, вычислив √3. √3≈1,73 - поставим это значение:
32+8√3=32+8×1,73=32+13,84=45,84(ед²)
ПЕРВЫЙ РИСУНОК С ВАШЕГО ДОКУМЕНТА
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.
ответ: S=45,84(ед²)
Объяснение:
Проведём ещё высоту АН. Она делит трапецию так на прямоугольный треугольник АВН и прямоугольник ВСДН так, что НД=ВС, а также ВН=СД=4.
Рассмотрим ∆АВН. В нём угол А=30°, а катет ВН, лежащий напротив него равен половине гипотенузы АВ (свойство угла 30°) поэтому АВ=ВС=НД=4×2=8.
Найдём АН по теореме Пифагора:
АН²=АВ²–ВН²=8²–4²=64–16=48
АН=√48=4√3
Тогда АД=АН+НД=4√3+8
Площадь трапеции вычисляется по
формуле:
S=(ВС+АД)÷2×4=8+(8+4√3)×4/2=
=(8+8+4√3)×2=(16+4√3)2=32+8√3(ед²)
Можно так и оставить, а можно вычислить приблизительное значение, вычислив √3. √3≈1,73 - поставим это значение:
32+8√3=32+8×1,73=32+13,84=45,84(ед²)
ПЕРВЫЙ РИСУНОК С ВАШЕГО ДОКУМЕНТА
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.