Начертите прямоугольный треугольник обозначьте его вершины буквами M,K и P где Р вершина прямого угла.Проведите высоту PA треугольника.Назовите отрезок являющийся проекцией катета PK на гипотенузу
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
*объяснения понять чуть проще, если сделать рисунки к каждой из задач*
1. ответ: 60°.
∠BAC=∠BCA=80° (как углы при основании равнобедренного треугольника)
∠DAC=1/2∠BAC=80°/2=40° (т. к. АD - биссектриса)
∠ADC=180°-(∠DCA+∠DAC)=180°-(80°+40°)=180°-120°=60° (сумма углов треугольника равна 180°)
2. ответ: 28°.
Т. к. сумма углов треугольника равна 180°, то третий угол равен 180°-71°-81°=28°.
3. ответ: 9°.
Сумма углов треугольника равна 180°, углы при основании равнобедренного треугольника равны. Значит, ∠С = (180°-162°)/2 = 18°/2 = 9°.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см