Начертите Начертить остроугольный произвольный треугольник. Вписать в него окружность. 2. Начертить тупоугольный произвольный треугольник. Описать около него окружность. 3. Начертить произвольный треугольник. Построить точку пересечения медиан этого треугольника. 4. Начертить прямоугольный треугольник. Построить точку пересечения медиан этого треугольника. Письменно сделать вывод геометрического места точки пересечения медиан в прямоугольном треугольнике.
ответ:8 корней из 105
Объяснение:
Сначала фотка с рисунком, потом с ручкой, потом с большим решением, а потом желтая фотка
2) На фото сумбурно, но попробую объяснить.
Объем равен произведению высоты на площадь (в нашем случае -- это правильный треугольник, поэтому я сразу поставила его формулу)
Дальше из прямоугольного треугольника составляю систему: теорема Пифагора и косинус (косинус-- это отношение прилягаемого катета к гипотенузе)
Из второго узнаем, что с=3а
3)На следующем фото у меня формула Герона, по которой можно найти площадь треугольника А1ВС. Но нам она известна, поэтому, подставив вместо с 3а, мы находим сторону а, из которой потом легко вывели с
4)Далее по теореме Пифагора, которую мы написали ранее, находим высоту. Теперь нам известно всё, чтобы узнать объем. Подставляем и готово
Объяснение:
∠SAO = 60°
Объяснение:
Проведем SO⊥(ABC).
SO = 12 см - расстояние от S до плоскости квадрата.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость.АО - проекция SA на (АВС), значит
∠SAO - угол между прямой SA и плоскостью квадрата - искомый.
SA = SB = SC = SD по условию.
Если равны наклонные, проведенные к плоскости из одной точки, то равны и их проекции:OA = OB = OC = OD.
Значит, О - центр квадрата (точка пересечения диагоналей).
AD = 4√6 см, тогда диагональ квадрата:
AC = AD√2 = 4√6 · √2 = 8√3 см
AO = 0,5 AC = 0,5 · 8√3 = 4√3 см
Из прямоугольного треугольника SOA:
∠SAO = 60°