Высота. медиана, биссектриса в равнобедренном треугольнике Доказательство теоремы номер 2:
Дан Δ ABC. Из точки В проведем высоту BD. Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора). Прямые АС и BD называются перпендикуляром. В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1). АВ = ВС — боковые стороны равны. Стороны АD = СD, т.к. точка D отрезок делит пополам. Следовательно Δ ABD = ΔBCD. Биссектриса, высота и медиана это один отрезок - BD
Формула через синус:
S = ab * sin(∠ab)/2
Синус через косинус:
sin(∠ab) = √(1 - (cos(∠ab))^2)
Теорема косинусов:
c^2 = a^2 + b^2 - 2ab * cos(∠ab)
c^2 - a^2 - b^2 = 2ab * cos(∠ab)
(c^2 - a^2 - b^2)/(2ab) = cos(∠ab)
Подставим найденный косинус во второе уравнение
sin(∠ab) = √(1 - ((c^2 - a^2 - b^2)/(2ab))^2)
Подставим наше уравнение в первое уравнение
S = ab * √(1 - ((c^2 - a^2 - b^2)/(2ab))^2) * 1/2
После того, как ты подставишь значения, получится 37/2 = 18,5
Я сделал проверку (по формуле Герона, конечно же) получился такой же ответ
P.s
Я прикрепил скрин из калькулятора
В первом уравнении я обозначил площадь за x, а во втором за S
Доказательство теоремы номер 2:
Дан Δ ABC.
Из точки В проведем высоту BD.
Треугольник разделился на Δ ABD и ΔCBD. Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
Прямые АС и BD называются перпендикуляром.
В Δ ABD и Δ BCD ∠ BАD = ∠ BСD (из Теоремы 1).
АВ = ВС — боковые стороны равны.
Стороны АD = СD, т.к. точка D отрезок делит пополам.
Следовательно Δ ABD = ΔBCD.
Биссектриса, высота и медиана это один отрезок - BD