№3) Пусть а(с) будет х, тогда с будет (3+х) а²=а(с)*с 2²=х(х+3) х²+3х-4=0 D=3²-4(-4)=9+16=25 x1;2=(-3±√25)/2 x1=-8/2=-4 не подходит ( длина отрезка не может быть отрицательным числом) х2=2/2=1 а(с)=х=1 с=1+3=4 h=√(b(c)*a(c)=√(3*1)=√3 b=√(b(c)*c)=√(3*4)=2√3 ответ: с=4; а(с)=1; b=2√3; h=√3
Объяснение:
1 . За Т. синусів 8/sin30° = x/sin45° ; x =( 8sin45° )/sin30° =
= ( 8* √2/2 )/0,5 = 8√2 ≈ 11,28 ; x ≈ 11,28 .
∠N = 180°- ( 30° + 45° ) = 105° ; ∠N = 105° .
За Т. синусів y/sin105° = 8/sin30° ; y = ( 8sin105° )/sin30° =
= ( 8*sin105° )/sin30° = ( 8sin75° )/0,5 ≈ 16* 0,97 = 15,52 ; y ≈ 15,52 .
2 . ∠MRQ = 180° - 80° = 100° ; ∠M = 180° - ( 100° + 50° ) = 30° .
За Т. синусів 13/sin30° = x/sin50° ; x = ( 13sin50° )/sin30° =
= 26*sin50° ≈ 26 * 0,766 = 19,92 ; x ≈ 19,92 .
13/sin30° = y/sin100° ; y = ( 13sin100° )/sin30° = 26 *sin80° ≈
≈ 26 * 0,98 = 25,48 ; y ≈ 25,48 .
Решение:
Пропорциональные отрезки прямоугольного треугольника.
h=√(a(c)*b(c)=√(25*1)=√25=5
c=a(c)+b(c)=25+1=26
a=√(a(c)*c)=√(25*26)=5√26
b=√(b(c)*c)=√(1*26)=√26.
ответ: а=5√26; b=√26; c=26; h=5
№2)
Пропорциональные отрезки прямоугольного треугольника
b²=b(c)*c
c=b²/b(c)=8²/4=64/4=16
a(c)=c-b(c)=16-4=12
h=√(a(c)*b(c)=√(4*12)=2*2√3=4√3.
a=√(c*a(c)=√(16*12)=4*2√3=8√3.
ответ: а=8√3; с=16; а(с)=12; h=4√3
№3)
Пусть а(с) будет х, тогда с будет (3+х)
а²=а(с)*с
2²=х(х+3)
х²+3х-4=0
D=3²-4(-4)=9+16=25
x1;2=(-3±√25)/2
x1=-8/2=-4 не подходит ( длина отрезка не может быть отрицательным числом)
х2=2/2=1
а(с)=х=1
с=1+3=4
h=√(b(c)*a(c)=√(3*1)=√3
b=√(b(c)*c)=√(3*4)=2√3
ответ: с=4; а(с)=1; b=2√3; h=√3