Начертите два паралельных отрезка длины которых равны.начертите точку являющуюся центром симметрии при котором один отрезок отображается на другой докажите это (с подробным решением) плз
Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
Я формулировку теоремы не стала удалять (повторить всегда полезно)) но она и не пригодилась... 1/ отрезки касательных, проведенных из одной точки (К) равны... DK=KC 2/ центр вписанной в угол окружности лежит на биссектрисе этого угла)) ОК - биссектриса ∠DKC ∠DKO = ∠CKO ∠DOK = ∠COK 3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу ∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC т.е. DA || KO О --середина АС ---> KO --средняя линия, К --середина ВС DK = KC = (1/2)BC = 6
но она и не пригодилась...
1/ отрезки касательных, проведенных из одной точки (К) равны...
DK=KC
2/ центр вписанной в угол окружности лежит на биссектрисе этого угла))
ОК - биссектриса ∠DKC
∠DKO = ∠CKO
∠DOK = ∠COK
3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу
∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC
т.е. DA || KO
О --середина АС ---> KO --средняя линия, К --середина ВС
DK = KC = (1/2)BC = 6