1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.
60 градусов каждый угол треугольника АВД
Объяснение:
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)