ответ: 30см²
Объяснение:
Высота ВН общая для треугольников АВС, АВD и BDC.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты.
Ѕ(ABC):S(BCD)=AC:DC
Примем площадь ∆ BCD равной x ⇒
48:х=(6+10):10 => 480=16х ⇒ х=30 см²
ответ: Ѕ(BCD)=30 см²
Тот же результат получим из отношения площадей треугольников АВС и BCD, выраженных по формуле S=a•h/2
ответ: 30см²
Объяснение:
Высота ВН общая для треугольников АВС, АВD и BDC.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты.
Ѕ(ABC):S(BCD)=AC:DC
Примем площадь ∆ BCD равной x ⇒
48:х=(6+10):10 => 480=16х ⇒ х=30 см²
ответ: Ѕ(BCD)=30 см²
Тот же результат получим из отношения площадей треугольников АВС и BCD, выраженных по формуле S=a•h/2