№3
Дано:
(знак треугольника) ABC
(знак угла) BAC=30°
(знак угла) ACB=90°
CB= 24 см
---------
Найти: AB
(рисунок срисовать)
1) (знак угла) ABC=180-90-30=60°(По теореме сумма всех углов)
2)сделаем(знак треугольника) ABD=> (знак угла) A=(знак угла)D=60°=>DB=AB=>DB=2CB=>AB=2CB(по свойству прямоуг. треугольника)
3)AB=2•24=48 см
ответ: AB= 48 см
№4
BE=биссектриса
(знак угла) B=60°
AB=16 см
¯¯¯¯¯
Найти: AE
(срисовать рисунок)
1)AB=BC, AE=EC, BE- биссектриса => (знак треугольника) ABE=(Знак треугольника) EBC=> BEC и АЕВ=90°, ЕВС и АВЕ=30°
2)(знак угла) ВАЕ=ВСЕ=>АЕ=2ЕВ=ВС=2ЕВ(По свойству прямоуг. треугольника)
3)BC=AB=> EB=16:2= 8 см
ответ: EB=8 см.
Объяснение:
Свойства прямоугольного треугольника
В прямоугольном треугольнике гипотенуза больше катета.
Катет, лежащий против угла, величина которого равна 30°, равен половине гипотенузе.
Если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Теорема о сумме углов треугольника
Сумма углов треугольника равна 180°
№3
Дано:
(знак треугольника) ABC
(знак угла) BAC=30°
(знак угла) ACB=90°
CB= 24 см
---------
Найти: AB
(рисунок срисовать)
1) (знак угла) ABC=180-90-30=60°(По теореме сумма всех углов)
2)сделаем(знак треугольника) ABD=> (знак угла) A=(знак угла)D=60°=>DB=AB=>DB=2CB=>AB=2CB(по свойству прямоуг. треугольника)
3)AB=2•24=48 см
ответ: AB= 48 см
№4
Дано:
(знак треугольника) ABC
BE=биссектриса
(знак угла) B=60°
AB=16 см
¯¯¯¯¯
Найти: AE
(срисовать рисунок)
1)AB=BC, AE=EC, BE- биссектриса => (знак треугольника) ABE=(Знак треугольника) EBC=> BEC и АЕВ=90°, ЕВС и АВЕ=30°
2)(знак угла) ВАЕ=ВСЕ=>АЕ=2ЕВ=ВС=2ЕВ(По свойству прямоуг. треугольника)
3)BC=AB=> EB=16:2= 8 см
ответ: EB=8 см.
Объяснение:
Свойства прямоугольного треугольника
В прямоугольном треугольнике гипотенуза больше катета.
Катет, лежащий против угла, величина которого равна 30°, равен половине гипотенузе.
Если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Теорема о сумме углов треугольника
Сумма углов треугольника равна 180°
На прямой a возьмем точки B и C.
Аксиома стереометрии: Через любые три точки, не лежащие на одной прямой, можно провести плоскость, притом только одну.
Так как точка А не лежит на прямой a, через точки A, B, C можно провести плоскость, притом только одну.
Аксиома стереометрии: Если две точки прямой лежат в одной плоскости, то все точки данной прямой лежат в этой плоскости.
Так как точки B и C лежат в одной плоскости, все точки прямой a лежат в этой плоскости.
Через прямую a и не лежащую на ней точку A можно провести плоскость, притом только одну.