)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник.подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но:а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
Дан треугольник с ВЕРШИНАМИ А(-3,0), В(-1,6), С(3,2)
1)уравнение стороны АС : (х + 3)/6 = у/2 это каноническое уравнение.
Приведём к общему знаменателю и сократим на 2:
х -3у + 3 = 0 это общее уравнение,
у = (1/3)х + 1 это уравнение с угловым коэффициентом.
2) Уравнение высоты АК .
Находим сначала уравнение стороны ВС: (х + 1)/4 = (у - 6)/(-4).
Отсюда имеем у = -х + 5. к = -1.
Для высоты АК к = -1/(кВС) = -1/-1 = 1. Уравнение у = х + в. Для опредения в подставим координаты точки А: 0 = 1*(-3) + в. Отсюда в = 3.
Уравнение АК: у = х + 3.
3) Длина средней линии МР/ВС . ВС = √(4² + (-4)²) = √32 = 4√2.
Тогда средняя линия МР = (1/2)ВС = 2√2.
4) Угол МР^МВ . Находим уравнение стороны АВ: (х + 3)/2 = у/6.
Или у = 3х +9 Здесь е = 3.
Тангенс угла В = (к(ВС) - к(АВ))/(1 - (к(ВС)*к(АВ))) = (-1-3)/(1-1*3) = -4/-1 = 2.
Угол В = arc tg 2 = 1,107149 радиан = 63,43495°.
Угол МР^МВ как односторонний равен 180 - В = 180 - 63,43495 = 116,56505 °.
5) Точка пересечения высот треугольника. Надо о=найти уравнение высоты ВН. к(ВН) = -1/к(АС) = -1/(1/3) = -3.
ВН: у = -3х + в. Подставим координаты точки В: 6 = -3*(-1) + в. в = 6 - 3 = 3. Уравнение ВН: у = -3х + 3.
Находим точку пересечения: -3х + 3 = х + 3 4х = 0 х = 0. у = 3.