Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника.
Свойство средней линии: средняя линия параллельна третьей стороне треугольника и равна ее половине.
Поэтому:
Каждая сторона треугольника, образованного средними линиями, равна половине соответствующей стороны данного треугольника, т.е. периметр данного треугольника будет в два раза больше периметра треугольника, образованного средними линиями, т.е.
ответ: а) 42,5 см.
Объяснение:
Периметр треугольника по таким данным задачи зависит от того чему равно основание. То есть имеет место два варианта:
1 вариант. Если основание (АС) равно 17 см. Такой треугольник не существует. 8,5+8,5=17 ?
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0), где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
В нашем случае a+b=с, что недопустимо.
***
2 вариант. Основание АС =8,5 см.
Тогда Р=АВ+ВС+АС=2*17+8,5= 42,5 см.
Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника.
Свойство средней линии: средняя линия параллельна третьей стороне треугольника и равна ее половине.
Поэтому:
Каждая сторона треугольника, образованного средними линиями, равна половине соответствующей стороны данного треугольника, т.е. периметр данного треугольника будет в два раза больше периметра треугольника, образованного средними линиями, т.е.
если Р₁ = 12 см, то Р = 12 · 2 = 24 (см).
См. рисунок
ответ: 24 см.