Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
14
Объяснение:
Треугольник ABC — равнобедренный, поэтому ∠BAC=∠CBA=45∘. В прямоугольном треугольнике MTA угол A равен 45∘, значит, угол M тоже равен 45∘ и треугольник равнобедренный. Следовательно, AT=MT=3,5. Проведём медиану CK в △ABC. В силу того, что треугольник равнобедренный, CK является и высотой. Отрезки CK и MT параллельны, так как оба перпендикулярны AB. Отрезок MT является средней линией △ACK, так как он параллелен CK и проходит через середину AC. Тогда AK=2AT=7. Так как CK — медиана, AB=2AK=14.