На рисунке изображен ромб ABCD и равносторонняя трапеция ABKZ. AB - линия пересечения этих плоскостей. MN - средняя линия трапеции, MN=7см и PABCD=16см. Найдите длину отрезка ZK. Варианты ответов: 23 см 11 см 15 см 14 см 10 см
Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13
Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2
находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13
Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2
находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед