См. ПЕРВЫЙ чертеж. На нем все обозначения. q^2 = R^2 - (m/2)^2; p^2 = r^2 - (m/2)^2; Отсюда (2*m)^2 + (q - p)^2 = (R + r)^2; (это просто теорема Пифагора) 4*m^2 + q^2 + p^2 - 2*q*p = R^2 + r^2 + 2*R*r; 4*m^2 + R^2 + r^2 - m^2/2 - R^2 - r^2 - 2*R*r = 2*q*p; (свожу подобные и делю на 2); (7/4)*m^2 - R*r = q*p; (это возводится в квадрат); (49/16)*m^4 - 2*(7/4)*m^2*R*r + R^2*r^2 = (R^2 -m^2/4)*(r^2 - m^2/4) = = R^2*r^2 - (1/4)*m^2*(R^2 + r^2) + m^2/16; (ясно, что свободные от неизвестного m слагаемые выпадают, и степень понижается :)); 3*m^2 = (7/2)*R*r - (R^2 + r^2)/4; Собственно, это ответ. Его можно "переписывать" в каких-то иных формах, например, так m = (√3/6)*√(16*R*r - (R + r)^2); сути это не меняет. Почему эта задача вызвала такие моральные затруднения, я не понимаю. Арифметику проверяйте! :)
Мне захотелось показать несколько простых ЧУДЕС, которые зарыты в этом условии. См. ВТОРОЙ рисунок, он немного отличается от первого. Семь отличий искать не надо :). Проведена общая внутренняя касательная до пересечения с прямой. Она делит средний (из трех равных) отрезок на части x и m - x; отрезок касательной t; Ясно, что x*(x + m) = t^2 = (m - x)*(m - x + m); откуда легко найти x = m/2; то есть общая внутренняя касательная делит средний отрезок пополам. Это уже НЕЧТО, но есть и дальше :) r^2 + t^2 = p^2 + (x + m/2)^2 = r^2 - m^2/4 + m^2; t^2 = (3/4)^m^2; t = m*√3/2; к сожалению, это не сильно в поиске m :);
В квадрате АВСD точка К - середина стороны ВС, точка М - серидина стороны АВ. Докажите, что прямые АК и МД перпендикулярны, а треугольники АЕМ (Е - точка пересечения прямых АК и МД) и АВК подобны. Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними. Угол CND=углу АМD, угол АDМ=NCD Сумма углов ADM и АМD равны 90 градусов. Рассмотрим треугольник DNO. Угол OND=CND, угол АDМ=NCD. И в сумме они дают 90 градусов. Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов. Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла. Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM 2AM/OD=AM/ON, значит OD=2ON Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6 Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5 Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5 Площадь квадрата Sк=(12√5)²=720 Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180 Площадь AMCD=720-180=540
q^2 = R^2 - (m/2)^2;
p^2 = r^2 - (m/2)^2;
Отсюда
(2*m)^2 + (q - p)^2 = (R + r)^2; (это просто теорема Пифагора)
4*m^2 + q^2 + p^2 - 2*q*p = R^2 + r^2 + 2*R*r;
4*m^2 + R^2 + r^2 - m^2/2 - R^2 - r^2 - 2*R*r = 2*q*p; (свожу подобные и делю на 2);
(7/4)*m^2 - R*r = q*p; (это возводится в квадрат);
(49/16)*m^4 - 2*(7/4)*m^2*R*r + R^2*r^2 = (R^2 -m^2/4)*(r^2 - m^2/4) =
= R^2*r^2 - (1/4)*m^2*(R^2 + r^2) + m^2/16; (ясно, что свободные от неизвестного m слагаемые выпадают, и степень понижается :));
3*m^2 = (7/2)*R*r - (R^2 + r^2)/4;
Собственно, это ответ. Его можно "переписывать" в каких-то иных формах, например, так
m = (√3/6)*√(16*R*r - (R + r)^2);
сути это не меняет.
Почему эта задача вызвала такие моральные затруднения, я не понимаю.
Арифметику проверяйте! :)
Мне захотелось показать несколько простых ЧУДЕС, которые зарыты в этом условии. См. ВТОРОЙ рисунок, он немного отличается от первого. Семь отличий искать не надо :). Проведена общая внутренняя касательная до пересечения с прямой. Она делит средний (из трех равных) отрезок на части x и m - x; отрезок касательной t;
Ясно, что x*(x + m) = t^2 = (m - x)*(m - x + m);
откуда легко найти x = m/2;
то есть общая внутренняя касательная делит средний отрезок пополам.
Это уже НЕЧТО, но есть и дальше :)
r^2 + t^2 = p^2 + (x + m/2)^2 = r^2 - m^2/4 + m^2;
t^2 = (3/4)^m^2;
t = m*√3/2;
к сожалению, это не сильно в поиске m :);
Треугольники СDN и АМD равны по двум сторонам и прямому углу между ними.
Угол CND=углу АМD, угол АDМ=NCD
Сумма углов ADM и АМD равны 90 градусов.
Рассмотрим треугольник DNO.
Угол OND=CND,
угол АDМ=NCD. И в сумме они дают 90 градусов.
Отсюда угол МOD = 90 градусов, т.к. сумма углов треугольника равна 180 градусов.
Треугольники DNO и АMD подобны по трем углам, хотя для прямоугольных треугольников достаточно одного равного острого угла.
Найдем коэффициент подобия к=AD/OD=AM/ON=MD/ND
т.к. по условию AD=2AM и АМ=АN=ND, то к=2AM/OD=AM/ON=MD/AM
2AM/OD=AM/ON, значит OD=2ON
Площадь Δ DNO SΔ=36=OD*ON/2=2ON*ON/2=ON². ON=6
Тогда OD=2*6=12, а ND=√ON²+OD²=√36+144=√180=6√5
Сторона квадрата равна AB=BC=CD=AD=2*6√5=12√5
Площадь квадрата Sк=(12√5)²=720
Площадь AMCD= площадь квадрата Sк - площадь S ΔСВМ
площадь S ΔСВМ=1/2*ВС*ВМ=1/2*12√5*6√5=180
Площадь AMCD=720-180=540