На ребрах AA1, A1B1 і CD куба ABCDA1B1C1D1 позначили відповідно точки M, N і K (рис. 6.28). Побудуйте переріз куба площиною, що проходить через точку K паралельно площині MNC.
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
9
Объяснение:
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
d² = (√260/2)² + 4² = 260/4 + 16 = 65 + 16 = 81
d = √81 = 9
ответ: 9